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Anatomy and Flow in Normal and Ischemic
Microvasculature Based on a Novel Temporal

Fractal Dimension Analysis Algorithm
Using Contrast Enhanced Ultrasound

Dimitrios Charalampidis*, Marco Pascotto, Edmund Kenneth Kerut, and Jonathan R. Lindner

Abstract—Strategies for improvement of blood flow by pro-
moting new vessel growth in ischemic tissue are being developed.
Recently, contrast-enhanced ultrasound (CEU) imaging has been
used to assess tissue perfusion in models of ischemia-related
angiogenesis, growth-factor mediated angiogenesis, and tumor
angiogenesis. In these studies, microvascular flow is measured in
order to assess the total impact of adaptations at different vascular
levels. High-resolution methods for imaging larger vessels have
been developed in order to derive “angiograms” of arteries, veins,
and medium to large microvessels. We describe a novel method of
vascular bed (microvessel and arterial) characterization of vessel
anatomy and flow simultaneously, using serial measurement of the
fractal dimension (FD) of a temporal sequence of CEU images.
This method is proposed as an experimental methodology to
distinguish ischemic from nonischemic tissue. Moreover, an im-
proved approach for extracting the FD unique to this application
is introduced.

Index Terms—Contrast enhanced ultrasound (CEU), fractal di-
mension (FD), ischemia.

I. INTRODUCTION

ABILITY TO assess morphologic changes that occur during
neovascularization is becoming increasingly important.

Characterization of proliferation and remodeling of noncapil-
lary microvessels (arterioles, venules), small arteries, and small
veins is necessary for understanding pathologic alterations in
cancer, adaptive responses to tissue ischemia, or therapeutic
effects to pro-angiogenic therapies that are now being tested
in the clinical setting. Conventional angiography is poorly
suited for assessment of the microcirculation due to its limited
ability to image vessels m. In response, there have

Manuscript received December 7, 2005; revised April 25, 2006. Asterisk in-
dicates corresponding author.

*D. Charalampidis is with the Department of Electrical Engineering, Col-
lege of Engineering, University of New Orleans, New Orleans, LA 70148 USA
(e-mail: dcharala@uno.edu).

M. Pascotto is with the Division of Cardiology, University of Virginia, Char-
lottesville, VA 22908 USA.

E. K. Kerut is with the Departments of Physiology and Pharmacology,
Louisiana State University Health Sciences Center, New Orleans, LA 70112
USA.

J. R. Lindner is with the Division of Cardiovascular Medicine, Oregon Health
and Sciences University, Portland, OR 97201 USA.

Digital Object Identifier 10.1109/TMI.2006.877442

been recent advances in high-resolution computed tomography
or “micro-CT” allowing a detailed three-dimensional mapping
of anatomical changes in small arteries and arterioles in animal
models of neovascularization related to ischemic disease and
atherosclerosis [1], [2]. These studies have been useful for
understanding how the normal ordered network or fractal
pattern of vessel distribution is disturbed in these pathologic
states. However, temporal assessment of vessel territory flow is
not possible with these techniques so that the relation between
vessel order and flow is not possible.

Contrast-enhanced ultrasound (CEU) imaging has recently
been used to assess tissue perfusion in models of ischemia-re-
lated angiogenesis, growth-factor mediated angiogenesis, and
tumor angiogenesis [3]–[6]. This technique relies on ultrasound
detection of encapsulated microbubble contrast agents as they
pass through the microcirculation of a tissue within the acoustic
beam. Perfusion imaging is performed by destruction of mi-
crobubbles within the ultrasound beam profile using high-power
imaging sweeps, and then subsequent measurement of the rate
and extent of microbubble replenishment back into the sector
[7]. In previous studies examining angiogenesis, flow at the
most distal portion of the microcirculation has been measured
in order to assess the total impact of adaptations at different
vascular levels. Recently, high-resolution methods for anatomic
mapping of the noncapillary microcirculation have been devel-
oped which preserve temporal flow data. These techniques rely
on microbubble destruction and subsequent high-frequency
real-time imaging using maximum intensity projection (MIP)
in order to derive virtual angiograms of arteries, veins and
medium to large microvessels. With MIP, the intensity of any
given pixel at any time during image acquisition is displayed as
the infinite persistence of the maximal intensity achieved.

In this study, we describe a method for assessment of mi-
crovessel and arterial flow characteristics using the fractal
dimension (FD). The FD has been used in image processing
applications including medical applications [8]–[12], and re-
mote sensing [13]. An ability to quantify roughness makes
FD analysis particularly useful in texture related applications
[14], [15]. In particular, FD has been used for the analysis of
ultrasound imagery including that of breast [21], [22], bones
[23], atherosclerotic carotid plaques [24], [25], ovarian tumor
[26], liver [27], [28], lungs [29], and the backscattering of
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Fig. 1. Two CEU image examples. Each row shows an example from the same
animal for (a) normal and (b) ischemic proximal hindlimbs.

blood cells [30]. Fractal analysis was used in this work because
FD has been shown to be successful in describing branching
structures [32], [33]. The angiograms of arteries, veins, and
microvessels possess textural, and more specifically, branching
structure characteristics. Therefore, measurement of the FD
appears to be an appropriate measure for quantifying proximal
hindlimb ischemia in the laboratory animal. On the other hand,
most previous work on texture analysis has shown that other
textural descriptors, such as Gabor filter banks and wavelets,
seem to be more appropriate for images highly uniform in the
textural sense.

A FD-based technique is proposed to study the development
characteristics from a sequence of CEU proximal hindlimb im-
ages of rats administered microbubble agents, in order to dis-
tinguish ischemic from non-ischemic limbs. The novelty of the
proposed technique is that, in contrast to static-image FD-based
analysis techniques, sequences of images are analyzed by ex-
tracting the FD from each image in the sequence and by exam-
ining temporal FD development. Moreover, a modification of
the variation approach [16], [20] for determining the FD in im-
ages is introduced suited to the particular application.

This paper is organized as follows. Section II introduces the
proposed FD approach and its usefulness to the particular appli-
cation. Section III presents the animal preparation, the imaging
methodology, and the image analysis technique. Section IV
presents experimental results evaluating the performance of the
proposed fractal measures and comparing them with other mea-
sures. Finally, Section V provides a discussion and conclusion.

II. FRACTAL DIMENSION TECHNIQUE

In this section, the FD approach is introduced. Fig. 1 presents
examples of CEU hindlimb images obtained from two animals.
For each animal, there is one normal [Fig. 1(a)] and one is-
chemic proximal hindlimb [Fig. 1(b)]. It is noted that normal
limbs appear to have a more “organized” and structured vascular
anatomy in comparison to ischemic limbs. Therefore, a structure
or roughness-based feature is appropriate for the application at

hand. In addition, the patterns appear to have a branching struc-
ture. Thus, FD is suitable as a method of analysis, as opposed
to other textural descriptors.

Section II-A describes the original variation method.
Section II-B introduces the modified FD technique, particularly
suited for the application of distinguishing between normal and
ischemic cases.

A. Variation Method

The variation method is adopted in this paper to compute the
FD, since it has been shown to provide more accurate FD esti-
mates for surfaces with a known FD, compared to other com-
monly used techniques [16], [20]. An size grayscale
image with pixel intensity at location can be con-
sidered as a surface of size , with a height of at

. Let us consider two points and on the surface
. According to the variation method, if a surface is a fractal,

then the slope of the line passing through points and goes
to infinity as approaches . The FD is defined as the rate
with which this slope goes to infinity. The variation function is
defined as

(1)

where indicates that the maximum and minimum
in (1) are calculated considering pixels located at inside
a square “box” of size centered at .
Moreover, is the scale parameter. The rate at which the
total variation in converges to zero as converges to zero is
directly related to the FD of . The FD of a discrete surface
is then defined as [20]

(2)

Practically, the algorithm for calculating the FD of an image is
as follows. The variation is calculated as the difference
between the maximum and the minimum grayscale values in a
small window of size . This window is centered
at the image pixel with coordinates . This computation
is repeated for all image pixels for different values of
. If we define as the sum of the variation over

the whole image, the FD is calculated as the slope of the line
that best fits the points where

. The line that best fits these points can be found
using linear regression.

B. Modified Variation Method

It is vital to calculate the FD in a manner that is meaningful for
the particular application. The particular hindlimb artery charac-
teristics may bias the FD calculations if the average variation
is used. As mentioned before, the branching structures depicted
in the CEU proximal hindlimb images of rats are nonuniform
in the textural sense. Let us consider an example of a normal
case for which 30% of the microvasculature exhibits slow blood
flow and nonsignificant branching, which are characteristics of
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an ischemic case. This may be due to the arterial structure of
the particular animal. The average variation will be signif-
icantly affected by the ischemic-like 30% of the microvascula-
ture. However, if the median is used, the ischemic-like part of
the image will be correctly ignored since the majority of the
variations are obtained from the normal areas. Thus, it is im-
perative to identify a fractal behavior insensitive to the specifics
of the hindlimb. This can be achieved if the median variation

median is used instead of the average. The
FD of the surface will then be defined as

(3)

Nevertheless, utilizing the allows the image background
to bias the FD calculations. For instance, considering that
there exists an approximately constant background, variations

at the background locations for all scales will be
almost equal to zero. A zero valued background will shift

to smaller values. In order to avoid the aforementioned
problem, the “active” area in the images is defined as the set
of pixels in a neighborhood around nonbackground pixels.
In contrast to the original FD where is calculated over the
whole image, is calculated only using the pixels in .
The nonbackground pixels are determined from the final image
in the sequence. The first step in determining the neighborhood

is to use an intensity threshold for removing background
noise by setting all background pixels equal to zero. Then, a

size moving average window is employed. The
filtered image is equal to where

denotes the two-dimensional (2-D) convolution operator.
Any nonzero pixel in is considered to be part of

. is then calculated as the median of all variations
calculated in . Similar to the original variation method, the
FD is calculated as the slope of the line that best fits the points

where .

III. METHODOLOGY

A. Animal Preparation

The study protocol was approved by the Animal Research
Committee at the University of Virginia. Proximal hindlimb
ischemia was produced in 17 Sprague–Dawley rats. Rats were
anesthetized with intraperitoneal injection of ketamine hy-
drochloride (10 mg kg ), xylazine (8 mg kg ) and atropine
(0.02 mg kg ). Using an aseptic technique, the left common
iliac artery and small proximal branches were ligated. Animals
were imaged at days 0, 4, 7, 14, and 28 after surgery. For
imaging studies, animals were anesthetized in a similar fashion
as above and a jugular vein was cannulated for microbubble
administration.

B. Contrast Ultrasound Imaging

Contrast-enhanced ultrasound imaging of the proximal
hindlimb was performed in the parasagital plane in the lon-
gitudinal orientation of the femoral artery. Phase-inversion
harmonic imaging (Aplio, Toshiba Corporation) was performed
with a linear array transducer at a receiver frequency of 5.5

MHz and a frame rate of 15 Hz. The dynamic range was set
at 40 dB, the acoustic focus was placed at the mid-portion of
the hindlimb, and 2-D gains were optimized and kept constant.
Contrast enhancement was produced by intravenous injections
of approximately lipid-shelled, decafluorobutane mi-
crobubbles (MP1950, University of Virginia). After appearance
of contrast in the hindlimb, microbubbles were destroyed by
a brief high-power (mechanical index 1.4) pulse sequence.
Image sets were then acquired using nondestructive low-power
(mechanical index 0.2) imaging using MIP. Data were recorded
on magnetic-optical disk, and transferred to a computer for
offline analysis.

C. Image Analysis and Temporal Development of Fractal
Dimension

Fractal dimension has been extensively used in image
analysis and time-series analysis including seismic signals
[17], electroencephalograms and electrocardiograms [18], and
rain-rate modeling [19]. However, the authors are not aware
of studies evaluating the temporal properties and development
of branching systems by calculating the FD on still images,
which are however part of an image sequence. The only work
following a concept similar to our approach is presented in
[31] where populations of oligodendrocytes or type 2 astro-
cytes derived from neonatal rat optic nerves were allowed to
differentiate in vitro. The FD of differentiating glial cells was
calculated over time. Nevertheless, in addition to the concept
of studying the FD development over time being used in a
completely different context, the FD in [31] is not directly
calculated from the image texture. It is rather estimated from
the cellular profiles in order to quantify the complexity of the
cellular contours. On the other hand, in our work we use the FD
to quantify the branching development of arteries over time. It
should also be emphasized at this point, that the proposed FD
technique is different than the ones used in time-series analysis.
In the case of time-series, the FD is calculated with respect to
the time-domain. In our case, the FD is calculated with respect
to the spatial-domain. Then, the temporal development of the
spatial-domain FD is studied.

Calculating the FD with respect to the time-domain, as in
time-series, would not be appropriate for our application. For in-
stance, consider the discrete signal constructed from
the image sequence using all corresponding pixels located at

. Then, is a time domain signal, where and
are constant while varies. The FD of could be cal-
culated with respect to time , and the FD average for all pixels

could be obtained. However, this approach would have the
following problems. First, only a single FD measure would be
obtained for the whole sequence. Second, there would be a sig-
nificant problem with alignment of images since the rats are not
completely motionless during image capturing. Finally, and per-
haps most importantly it can be shown that the signals
do not exhibit fractal behavior. For instance, if pixel location

corresponds to an artery, would simply be a step
function, since it would transition at some point in time from a
no-echo-present state to an echo-present state.

The FD extracted from a sequence of image frames consid-
ering examples of both normal and ischemic limbs is depicted in
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Fig. 2. Development of FD with respect to the frame number for normal and
ischemic cases.

Fig. 3. Example of background subtraction. (a) Image frame. (b) Background
frame. (c) Result after subtraction.

Fig. 2. It can be easily concluded that the FD for normal cases
exhibits higher increase rate in the beginning of the develop-
ment compared to the ischemic cases. The results shown in these
graphs can be explained since the microvascular flow for the is-
chemic proximal hindlimbs is expected to indicate a less struc-
tured vessel anatomy compared to the normal ones. Therefore,
the is an appropriate measure for quantifying ischemia,
where specifies the image frame. On the other hand, a static
FD measure will not suffice.

In order to avoid background interference, the first image
frame after applying the microbubble destruction by a brief
high-power pulse sequence is considered to be the background.
The background is subtracted from all consecutive frames in
order to obtain images depicting only the microvascular flow.
An example of background subtraction is presented in Fig. 3.

After the sequence is obtained, FD features that are
capable of differentiating normal from ischemic cases are ex-
tracted. These features are selected in order to characterize the
flow development as well as the vascular anatomy. More specif-
ically, the following features are used:

(5)

Essentially, is the average of in the time interval
, where is the length of the interval and spec-

ifies the last point in the interval. The superscript in the fea-
ture definition of (5) denotes the th feature. The curves
exhibit a fluctuating behavior, thus the average in (5) is used to
increase feature robustness by smoothing the sequence.
The value was empirically chosen to be approximately equal
to the period of oscillations. For example, Fig. 2 shows that there
is about one oscillation period between frames 50–70 for is-
chemic curve 6, and between frames 40–60 for ischemic curve
5. This is about 20 frames, corresponding to for a
frame rate of 15 Hz. Considering an sequence of length

, a total of frame numbers may be chosen as shown next

(6)

Parameters specify the relative locations,
at which features are extracted, with respect to the total length

of the sequence. The significance of these features
is that they quantify roughness or structure of the CEU images
as they develop through time.

IV. EXPERIMENTAL RESULTS

In this section, experimental results are presented to illustrate
the importance of the proposed features in the identification of
normal and ischemic cases. In this work, four features are
used , for , 0.5, 0.6, and 0.8. As a re-
minder, . Ideally, time points in the very beginning
of the development should show greater differences between the
normal and ischemic cases. However, in the early stages of the
development, the number of pixels corresponding to visible ar-
teries is small. Thus, the textural image characteristics have not
started to form yet, resulting in noisy textural measures.

Fig. 2 shows only 12 out of the 34 curves used in the experi-
ments to illustrate what is intuitively expected: Textural “rough-
ness” increases as branching develops. Since branching of ar-
teries develops faster for normal cases, the should in-
crease faster. Fig. 2 may lead to the conclusion that the slope at
early time points could be a better measure than (5). Neverthe-
less, it was also confirmed in the experiments that this is not gen-
erally true for the remaining curves used, and not entirely true
even for the curves depicted in Fig. 2. This was expected, since
the slope would be especially useful for early time points, how-
ever features extracted from those points are noisy in the sense
described above. For instance, normal curves 3–6 decrease for
the first few frames. Moreover, the may be relatively flat
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TABLE I
FOUR PROPOSED FD FEATURES FOR ISCHEMIC AND NORMAL CASES, AND THE FD DIFFERENCES BETWEEN

THE FOUR NORMAL AND ISCHEMIC FEATURES

for late time points even for normal cases, because the most sig-
nificant development takes place relatively early. This results in
small slopes, although the FD values used to estimate the slopes
may be large.

A. Usefulness of the FD Features in Distinguishing Normal
From Ischemic Vascularity

In this section, we present results that indicate the ability
of the proposed features to distinguish nonischemic from
ischemic vascularity from the two proximal hindlimbs of the
same rats. Such a comparison partially ignores the effect of the
animals’ particular vessel anatomy on the feature extraction
process. Table I compares the features extracted from the
two different proximal hindlimbs of the same animal. More
specifically, the values for ischemic and normal hindlimbs,
and the feature differences between normal and ischemic
hindlimbs for corresponding values are presented for each
animal. As expected, the ischemic cases exhibit lower
values compared to the normal ones with a few exceptions
shown in boldface. In most cases, the difference is higher for
smaller values. Small values are chosen to correspond to
the middle stages in the image development where the FD for
normal cases has already reached high values while the FD
for ischemic cases is still increasing. This conclusion is in
agreement to Fig. 2 which illustrates that normal cases reveal
faster flow characteristics in the very beginning of the image
development compared to the ischemic ones.

Fig. 4(a) presents a plot of feature versus feature ,
and Fig. 4(b) presents a plot of feature versus feature .
Fig. 4 shows that the ischemic and normal classes are not com-
pletely separable in the feature space. However, there is a good
indication that a classifier that uses the features would be
able to reduce classification errors. This is confirmed in the ex-
perimental results next.

Fig. 4. Feature plots (a) feature F versus feature F , and (b) feature F
versus feature F .

B. Comparison Between FD and Other Features

In this section, the proposed features are compared with two
different feature sets. The first feature set is extracted from the
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volume as it develops through time. The volume is defined
as the average pixel intensity in the image, and it is directly
related to the arterial flow. There is an indication that the flow
for normal cases is faster compared to the ischemic ones, thus

is expected to increase faster and reach a higher value for
normal cases. The volume features used for comparison
with the FD features are defined as follows:

(7)

where is defined as in (6). Four volume features are used for
, 0.4, 0.6, and 0.8 in order to examine the volume

development through time, including at early time points. In
contrast to texture, the volume increases in a smooth manner
starting from the early stages of the development.

The second feature set is calculated from the volume-slope
which is defined as the slope of at particular time

points. The volume-slope features used for the comparisons are
defined as follows:

(8)

The curves are smooth, thus it was found that regression
was not needed for the slope calculations. Four volume-slope
features are used for , 0.4, 0.6, 0.8.

In order to assess the performance of the features used, a
classification technique, namely the nearest means classifier
(NMC), has been employed. More specifically, given a set of
data vectors for which the associated classes are known,
the mean vector and covariance matrix for each class
can be calculated as follows:

(9)

(10)

where subscript denotes the th feature vector,
and subscript denotes the th class. For instance
in the FD case, if all four proposed features are used, the data
vectors are defined as

(11)

where subscript corresponds to the th animal. Moreover, since
there are only two classes, namely ischemic and normal, .

In order to test the feature performance using the NMC, the
following procedure is used.
Step 1) All data vectors but one, say , are used to com-

pute the mean vector and covariance matrix for the
two classes, based on (9), and (10).

TABLE II
CLASSIFICATION RESULTS USING THE NEAREST MEANS CLASSIFIER FOR (A)
FRACTAL FEATURES AND FEATURE COMBINATIONS, (B) VOLUME FEATURES

AND FEATURE COMBINATIONS, AND (C) VOLUME-SLOPE FEATURES AND

FEATURE COMBINATIONS

Step 2) The data vector which was not used in the above
calculations is tested. More specifically, the Maha-
lanobis distance of from the two class means
( , 2) is calculated

(12)

Step 3) Then, vector is labeled “class 2” if ,
or “class 1” if . Since the class to which

actually belongs is known, the correctness of
the classification result for is also known.

Step 4) Steps 1–3 are repeated for all data vectors and
the classification error is recorded.

The classification results are shown in Table II for different
features and feature combinations. It is shown that the combina-
tion of all four FD features provides smaller classification error
compared to any single FD feature, or to the combination of the
three features, , , and , or to any non-FD single
feature/feature combination.

In order to confirm the superiority of the proposed features, a
second comparison approach was followed. More specifically,
the features were compared with respect to the separability ratio
(SR). The SR is defined as the ratio of the absolute difference
between the means of two classes divided by the average stan-
dard deviation of the two classes

(13)

where , and , are, respectively, the means and
standard deviations of the two classes. The numerator of (13) is
a measure of the distance between the two classes, and the de-
nominator is a measure of the spread of the two classes. A large
SR indicates that the two classes can be better distinguished.
Table III shows that all FD features have a higher SR than any
other volume or volume-slope feature.
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TABLE III
FEATURE COMPARISONS WITH RESPECT TO SR

Fig. 5. Averages of the four (a) F features, and (b) F features, for normal
and ischemic proximal hindlimbs. Vertical lines indicate one standard deviation
above and below the average. FD ranges from 2 to 3, while the volume ranges
from 0 to 100.

Results related to the measure are presented in Fig. 5.
Fig. 5(a) presents the feature averages, for the ischemic
group and for the normal group. The vertical lines specify
one standard deviation above and below the average. Fig. 5(b)
presents a similar plot for the feature. We notice that in the
case of FD, the feature means are at least spaced apart by one
standard deviation of either of the two classes. This is not the
case for true for .

V. DISCUSSION AND CONCLUSION

We present a novel algorithm for characterization of vascular
anatomy and flow using temporal development of the FD from
a sequence of CEU images of the proximal hindlimb in the
rat. The novelty of the proposed technique is that the standard
Variation technique used for calculating the FD is modified to
suit the specific application, and that most importantly this is
the first time that the structure of vascular territory is evalu-
ated using such a temporal approach. Although previous works

have studied methods for characterizing the anatomical struc-
ture, the proposed work provides a study of both anatomy and
function. Using this methodology, we have robustly discrimi-
nated ischemic from nonischemic limbs. The results presented
in Section IV confirm that although FD is appropriate for this
application, multiple temporal-based FD features are required
in order to achieve fine classification performance. In distinc-
tion to this, analysis of temporal average intensity was unable
to discriminate these groups.

In conclusion, the temporal FD method proposed in this work
appears to be a novel experimental methodology for the analysis
and characterization of vascular territories. An interesting direc-
tion for future work would be to provide a theoretical relation
between the FD measures and the biological vascular models.
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